Respuesta :

Answer:

D(-2, 5).

Step-by-step explanation:

We are given that M is the midpoint of CD and that C = (10, -5) and M = (4, 0).

And we want to determine the coordinates of D.

Recall that the midpoint is given by:

[tex]\displaystyle M = \left(\frac{x_1 + x_2}{2} , \frac{y_1 + y_2}{2}\right)[/tex]

Let C(10, -5) be (x, y₁) and Point D be (x, y₂). The midpoint M is (4, 0). Hence:

[tex]\displaystyle (4, 0) = \left(\frac{10+x_2}{2} , \frac{-5+y_2}{2}\right)[/tex]

This yields two equations:

[tex]\displaystyle \frac{x_2 + 10}{2} = 4\text{ and } \frac{y_2 - 5}{2} = 0[/tex]

Solve for each:

[tex]\displaystyle \begin{aligned}x_2 + 10 &= 8 \\ x_2 &= -2 \end{aligned}[/tex]

And:

[tex]\displaystyle \begin{aligned} y_2 -5 &= 0 \\ y_2 &= 5\end{aligned}[/tex]

In conclusion, Point D = (-2, 5).