Respuesta :

Answer:

B:  [tex]a = \frac{y - k}{(x - h)^{2} }[/tex]

Step-by-step explanation:

Given the quadratic formula in vertex form, [tex]y = a(x - h)^{2} + k[/tex]

Start with subtracting k from both sides of the equation:

[tex]y - k = a(x - h)^{2} + k - k[/tex]

[tex]y - k = a(x - h)^{2}[/tex]

Then, isolate a by multiplying both sides of the equation by [tex][\frac{1}{(x - h)^{2}}][/tex]:

[tex]y - k [\frac{1}{(x - h)^{2}}] = a(x - h)^{2} [\frac{1}{(x - h)^{2}}][/tex]

This leaves you with the final answer:

[tex]\frac{y - k}{(x - h)^{2}} = a[/tex]