4. What is the standard form of the equation

x(2-3x)+ 9 = 0?

a.-3x²-2x+9=0 b. 3x2+2x+9=0

c. -3x²+2x+9=0

d. 3x²-2x+9=0

5. What are the roots of the quadratic equation

x²+2x-63=0?

a. 21 and 3 c. 9 and - 7

b. - 21 and 3

d. - 9 and 7

6. Which of the following quadratic equation can

be easily solved by extracting the square roots?

a. x²-4x-21-0

b. 4x²-25=0

c. 3x2-6x-21=0 d. x²+9x+18=0

7. What is the nature of the roots of a quadratic

equation with discriminant of 20?

a. Real, rational and equal b. Real, rational and not equal

c. Real, irrational and not equal

d. No real roots

8. Which of the following is the standard form of

(m+2)²+9=0?

a.m2+4m=13 c.m2+4m+13=0 b. m²-4m=13 d. m²+13=0

9. Which of the following equations represents a quadratic function?

a.y=x² - 4x - 21 c. y² + 2y - 15-0 d. (x-8)2 = 0

b. x² + 5x-3

10. It is the graph of quadratic function.

a. U-shaped curve b. Sideway S

c. Parabola d. Hyperbola

Respuesta :

A quadratic function is a polynomial of the form f(x) = a·x² + b·x + c, where a, and b are coefficients and c, a constant, are numbers, a is a non zero number

The correct options are;

4. c. -3·x² + 2·x + 9 = 0

5. d. -9 and 7

6. b. 4·x² - 25 = 0

7. c. Real irrational and not equal

8. c. m² + 4·m + 13 = 0

9. a. y = x² - 4·x - 21

10. c. Parabola

The reasons why the above options are selected are given as follows:

4. The given equation, x·(2 - 3·x) + 9 = 0, can be rewritten as follows;

x·(2 - 3·x) + 9 = 2·x - 3·x² + 9 = -3·x² + 2·x + 9 = 0

Therefore, correct option is c. -3·x² + 2·x + 9 = 0

5. The given quadratic equation, x² + 2·x - 63 = 0, can be factorized as follows;

Given that he coefficient f x² is 1, and  9 × (-7) = -63, and 9 - 7 = 2, we have;

x² + 2·x - 63 = (x + 9)·(x - 7) = 0

The roots of the equation are -9, and 7

The correct option is option d. -9 and 7

6. The equation that can be easily solved by extracting the square root is the equation that is separable into squares of the constant and square of the required variable

4·x² = 25

[tex]x = \sqrt{\dfrac{25}{4} } = \dfrac{5}{2}[/tex]

The correct option is b. 4·x² - 25 = 0

7. A quadratic equation that has a discriminant of 20, gives values of x in the forms;

[tex]x = \dfrac{-b \pm \sqrt{20} }{2\cdot a}[/tex]

Given that √20 = 2·√5, is an irrational number, we have that the results are real irrational and not equal

The correct option is option c. Real irrational and not equal

8. The given equation is (m + 2)² + 9 = 0

(m + 2)² + 9 = m² + 4·m + 4 + 9 = m² + 4·m + 13 = 0

The correct option is c. m² + 4·m + 13 = 0

9. A quadratic function is a function given in the form f(x) = a·x² + b·x + c

Where, f(x) = y, the correct option is option a.

a. y = x² - 4·x - 21

10. The shape of a quadratic function is the shape of a parabola

The correct option is option c.

c. Parabola

Learn more about quadratic functions here:

https://brainly.com/question/9610560