Respuesta :
[tex]\\ \sf\longmapsto (-5)^{x+1}\times (-5)^5=(-5)^7[/tex]
[tex]\boxed{\sf a^m\times a^n=a^{mn}}[/tex]
[tex]\\ \sf{:}\implies (-5)^{x+1+5}=(-5)^7[/tex]
[tex]\\ \sf{:}\implies (-5)^{x+6}=(-5)^7[/tex]
[tex]\\ \sf{:}\implies x+6=7[/tex]
[tex]\\ \sf{:}\implies x=7-6[/tex]
[tex]\\ \sf{:}\implies x=1[/tex]
Answer:
x = 1
Step-by-step explanation:
Using the rule of exponents
[tex]a^{m}[/tex] × [tex]a^{n}[/tex] = [tex]a^{(m+n)}[/tex] , then
[tex](-5)^{x+1}[/tex] × [tex](-5)^{5}[/tex] = [tex](-5)^{7}[/tex]
[tex](-5)^{(x+1+5)}[/tex] = [tex](-5)^{7}[/tex]
[tex](-5)^{x+6}[/tex] = [tex](-5)^{7}[/tex]
Since bases on both sides are the same , both - 5 , then equate exponents
x + 6 = 7 ( subtract 6 from both sides )
x = 1