Answer:
see explanation
Step-by-step explanation:
Using the identities
tan x = [tex]\frac{sinx}{cosx}[/tex] , cot x = [tex]\frac{cosx}{sinx}[/tex] , cosec x = [tex]\frac{1}{sinx}[/tex] , sec x = [tex]\frac{1}{cosx}[/tex]
Consider the left side
tanθ + cotθ
= [tex]\frac{sin0}{cos0}[/tex] + [tex]\frac{cos0}{sin0}[/tex]
= [tex]\frac{sin^20+cos^20}{sin0cos0}[/tex]
= [tex]\frac{1}{sin0cos0}[/tex]
= [tex]\frac{1}{sin0}[/tex] × [tex]\frac{1}{cos0}[/tex]
= cosecθ × secθ
= right side , thus verified