Respuesta :

Answer:

see explanation

Step-by-step explanation:

Using the identities

tan x = [tex]\frac{sinx}{cosx}[/tex] , cot x = [tex]\frac{cosx}{sinx}[/tex] , cosec x = [tex]\frac{1}{sinx}[/tex] , sec x = [tex]\frac{1}{cosx}[/tex]

Consider the left side

tanθ + cotθ

= [tex]\frac{sin0}{cos0}[/tex] + [tex]\frac{cos0}{sin0}[/tex]

= [tex]\frac{sin^20+cos^20}{sin0cos0}[/tex]

= [tex]\frac{1}{sin0cos0}[/tex]

= [tex]\frac{1}{sin0}[/tex] × [tex]\frac{1}{cos0}[/tex]

= cosecθ × secθ

= right side , thus verified