Respuesta :

[tex]z = 4-i[/tex] has a distance of [tex]\sqrt{17}[/tex].

Note - This question is about the complex numbers, in which we need to determine the norms of a given set of complex numbers. Complex numbers are numbers with the following number:

[tex]z = a+i\,b[/tex] (1)

Whose norm is defined below:

[tex]\|z\| = \sqrt{a^{2}+b^{2}}[/tex] (2)

Now we proceed to check each complex number:

i) [tex]z = 2 + i\,15[/tex]

[tex]\|z\| = \sqrt{2^{2}+15^{2}}[/tex]

[tex]\|z\| \approx 15.132[/tex]

ii) [tex]z = i\,17[/tex]

[tex]\|z\| = 17[/tex]

iii) [tex]z = 20-i\,3[/tex]

[tex]\|z\| = \sqrt{20^{2}+(-3)^{2}}[/tex]

[tex]\|z\| = \sqrt{409}[/tex]

[tex]\|z\| \approx 20.224[/tex]

iv) [tex]z = 4 - i[/tex]

[tex]\|z\| = \sqrt{4^{2}+(-1)^{2}}[/tex]

[tex]\|z\| = \sqrt{17}[/tex]

[tex]\|z\|\approx 4.123[/tex]

Therefore, [tex]z = 4-i[/tex] has a distance of [tex]\sqrt{17}[/tex].

We kindly invite to see this question on complex numbers: https://brainly.com/question/18392150