State the missing reason in this flow proof

Given: m angle 5 = 40 degrees, m angle 2 = 140 degrees

Prove a || b

There are five blank spots

Respuesta :

The complete flow proof is:

  1. [tex]\angle 5 = 40^o[/tex] ---- Given
  2. [tex]\angle 2 = 140^o[/tex] ---- Given
  3. [tex]\angle 5 + \angle 2 = 180^o[/tex] ----- [tex]\angle 5[/tex] and [tex]\angle 2[/tex] are supplementary angles
  4. [tex]\angle 5 + \angle 2 = 180^o[/tex] ----- [tex]\angle 5[/tex] and [tex]\angle 2[/tex] are same-side interior angles
  5. [tex]a ||b[/tex] ----- Proved

We have:

[tex]\angle 5 = 40^o[/tex]

[tex]\angle 2 = 140^o[/tex]

The proof of [tex]a ||b[/tex] is as follows:

The first statement is:

[tex]\angle 5 = 40^o[/tex] ---- Given

The next statement is:

[tex]\angle 2 = 140^o[/tex] ---- Given

Supplementary angles add up to [tex]180^o[/tex].

So, the third statement is:

[tex]\angle 5 + \angle 2 = 180^o[/tex] ----- [tex]\angle 5[/tex] and [tex]\angle 2[/tex] are supplementary angles

Same side of interior angles add up to [tex]180^o[/tex].

So, the fourth statement is:

[tex]\angle 5 + \angle 2 = 180^o[/tex] ----- [tex]\angle 5[/tex] and [tex]\angle 2[/tex] are same-side interior angles

Because the angles are supplementary angles and also same-side interior angles, then it means that line a is parallel to line b

So, the last statement is:

[tex]a ||b[/tex] ----- Proved

Read more about proofs of parallel lines at:

https://brainly.com/question/18396272