he rule is applied to trapezoid ABCD to produce the final image A"B"C"D". Trapezoid A double-prime B double-prime C double-prime D double-prime has points (negative 4, 5), (negative 1, 5), (0, 3), (negative 5, 3). Which ordered pairs name the coordinates of vertices of the pre-image, trapezoid ABCD? Select two options. (–1, 0) (–1, –5) (1, 1) (7, 0) (7, –5)

Respuesta :

Transformation involves moving a point away from its original location.

The vertices of the pre-image are:

[tex]\mathbf{(-1,0)\ and\ (-1,-5)}[/tex]

The rule is given as:

[tex]\mathbf{r_{y=x} ^oT_{4,0(x,y)}}[/tex]

The above rule means that

ABCD was translated by 4 units to the right, then reflected over line y = x,

The rule of right translation by 4 units is:

[tex]\mathbf{(x,y) \to (x + 4,y)}[/tex]

The rule of reflection over [tex]\mathbf{y = x}[/tex] is:

[tex]\mathbf{(x,y) \to (y,x + 4)}[/tex]

The coordinates of A"B"C"D" are:

[tex]\mathbf{A" = (-4,5)}[/tex]

[tex]\mathbf{B" = (-1,5)}[/tex]

[tex]\mathbf{C" = (0,3)}[/tex]

[tex]\mathbf{D" = (-5,3)}[/tex]

So, we have:

[tex]\mathbf{(x,y) \to (y,x + 4)}[/tex] and [tex]\mathbf{A" = (-4,5)}[/tex]

[tex]\mathbf{y = -4}[/tex]

[tex]\mathbf{x + 4 = 5}[/tex]

[tex]\mathbf{x = 1}[/tex]

This means:

[tex]\mathbf{A = (1,5)}[/tex]

[tex]\mathbf{(x,y) \to (y,x + 4)}[/tex] and [tex]\mathbf{B" = (-1,5)}[/tex]

[tex]\mathbf{y = -1}[/tex]

[tex]\mathbf{x + 4 = 5}[/tex]

[tex]\mathbf{x = 1}[/tex]

This means:

[tex]\mathbf{B = (1,-1)}[/tex]

[tex]\mathbf{(x,y) \to (y,x + 4)}[/tex] and [tex]\mathbf{C" = (0,3)}[/tex]

[tex]\mathbf{y = 0}[/tex]

[tex]\mathbf{x + 4 = 3}[/tex]

[tex]\mathbf{x = -1}[/tex]

This means:

[tex]\mathbf{C = (-1,0)}[/tex]

[tex]\mathbf{(x,y) \to (y,x + 4)}[/tex] and [tex]\mathbf{D" = (-5,3)}[/tex]

[tex]\mathbf{y = -5}[/tex]

[tex]\mathbf{x + 4 = 3}[/tex]

[tex]\mathbf{x = -1}[/tex]

This means:

[tex]\mathbf{D = (-1,-5)}[/tex]

Hence, the vertices of the pre-image are:

[tex]\mathbf{(-1,0)\ and\ (-1,-5)}[/tex]

Read more about transformation at:

https://brainly.com/question/13801312