The coordinate of point V is at (-16, 9)
If Point T(-9,5) lies on the perpendicular bisector of UV, this means that the point divides the line UV into two equal parts
Given the following coordinates
Midpoint T = (-9, 5)
U = (-2, 1)
Required
coordinate of point V
Using the midpoint formulas;
[tex]T(x, y) = (\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}) \\T(-9, 5) = (\frac{-2+x_2}{2}, \frac{1+y_2}{2})[/tex]
Get the value if x₂ and y₂
[tex]-9 = \frac{-2+x_2}{2}\\-18 = -2+x_2\\x_2 = -18+2\\x_2 = -16\\[/tex]
Similarly;
[tex]5 = \frac{1+y_2}{2}\\10 = 1+y_2\\y_2 = 10-1\\y_2 = 9\\[/tex]
Hence the coordinate of point V is at (-16, 9)
Learn more here: https://brainly.com/question/18049211