Point T(-9,5) lies on the perpendicular bisector of UV. If the
coordinates of point U are (-2,1), which of the following are the
coordinates of point V?

Respuesta :

The coordinate of point V is at (-16, 9)

If Point T(-9,5) lies on the perpendicular bisector of UV, this means that the point divides the line UV into two equal parts

Given the following coordinates

Midpoint T = (-9, 5)

U = (-2, 1)

Required

coordinate of point V

Using the midpoint formulas;

[tex]T(x, y) = (\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}) \\T(-9, 5) = (\frac{-2+x_2}{2}, \frac{1+y_2}{2})[/tex]

Get the value if x₂ and y₂

[tex]-9 = \frac{-2+x_2}{2}\\-18 = -2+x_2\\x_2 = -18+2\\x_2 = -16\\[/tex]

Similarly;

[tex]5 = \frac{1+y_2}{2}\\10 = 1+y_2\\y_2 = 10-1\\y_2 = 9\\[/tex]

Hence the coordinate of point V is at (-16, 9)

Learn more here: https://brainly.com/question/18049211