OT bisects ∠DOG. Find the measure of ∠DOG if ∠DOT = 4x + 4 and ∠TOG = 5x – 3

Answer:
[tex]\huge\boxed{64^o}[/tex]
Step-by-step explanation:
If OT is bisects ∠DOG, then m∠DOT = m∠TOG. Therefore
[tex]4x+4=5x-3[/tex] |subtract 4 from both sides
[tex]4x+4-4=5x-3-4\\\\4x=5x-7[/tex]|subtract 5x from both sides
[tex]4x-5x=5x-5x-7\\\\-x=-7[/tex]|change the signs
[tex]x=7[/tex]
Calculate the measure of ∠DOG
m∠DOG = 2(m∠DOT)
[tex]m\angle DOG=2(4\cdot7+4)=2(28+4)=2(32)=64[/tex]