Find the product:
[2 7][-3 7]= [a b ]
[1 3 ][1 -2] [ c d]
a= b= c=
d=

The result of the product of the two matrices is: [tex]\left[\begin{array}{cc}a&b\\c&d\end{array}\right] =\left[\begin{array}{cc}1&0\\ 0&1\end{array}\right] [/tex]
The product equation is given as:
[tex]\left[\begin{array}{cc}2&7\\1&3\end{array}\right] \left[\begin{array}{cc}-3&7\\1&-2\end{array}\right] = \left[\begin{array}{cc}a&b\\c&d\end{array}\right] [/tex]
Multiply the rows of the first matrix, by the columns of the second matrix.
So, we have:
[tex]\left[\begin{array}{cc}2 \times -3 + 7 \times 1&2 \times 7 + 7 \times -2\\1 \times -3 + 3 \times 1&1 \times 7 + 3 \times -2\end{array}\right] = \left[\begin{array}{cc}a&b\\c&d\end{array}\right] [/tex]
Evaluate the products
[tex]\left[\begin{array}{cc}-6 + 7&14 -14\\ -3 + 3&7 -6\end{array}\right] = \left[\begin{array}{cc}a&b\\c&d\end{array}\right] [/tex]
Evaluate the sum and the differences
[tex]\left[\begin{array}{cc}1&0\\ 0&1\end{array}\right] = \left[\begin{array}{cc}a&b\\c&d\end{array}\right] [/tex]
Rewrite the above equation as:
[tex]\left[\begin{array}{cc}a&b\\c&d\end{array}\right] =\left[\begin{array}{cc}1&0\\ 0&1\end{array}\right] [/tex]
Hence, the result of the product of the two matrices is:
[tex]\left[\begin{array}{cc}a&b\\c&d\end{array}\right] =\left[\begin{array}{cc}1&0\\ 0&1\end{array}\right] [/tex]
Read more about matrices at:
https://brainly.com/question/1821869
Answer:
1
0
0
1
Next Question: Identity
Step-by-step explanation:
Edge 2022