Respuesta :

Answer:

[tex]y = \frac{32}{3}[/tex]

Step-by-step explanation:

Firstly, move over the negative 3/4 fraction (don't forget to swap the operation i.e subtract to add):

[tex]\frac{y}{8} = \frac{7}{12} + \frac{3}{4}[/tex]

Now, to add the two fractions, simply multiply the numerator and denominator by 3:

[tex]\frac{3*3}{4*3} = \frac{9}{12}[/tex]

Now add this to the other fraction:

[tex]\frac{9}{12} + \frac{7}{12} = \frac{16}{12}[/tex]

This can be simplified down by dividing both the numerator and denominator by 4:

[tex]\frac{4}{3}[/tex]

Which now simplifies the original equation to:

[tex]\frac{y}{8} = \frac{4}{3}[/tex]

Remove the y out of the fraction:

[tex]\frac{1}{8}y = \frac{4}{3}[/tex]

Now multiply both sides by 8:

[tex](\frac{1}{8}y) * 8 = (\frac{4}{3}) * 8[/tex]

[tex]y = \frac{4*8}{3}[/tex]

[tex]y = \frac{32}{3}[/tex]

Hope this helps!