PLEASE HELP! 25 PTS!!

Consider function f and g.

[tex]f(x)=\frac{x-16}{x^2+6x-40}[/tex] for [tex]x\neq-10[/tex] and [tex]x\neq 4[/tex]

[tex]g(x)=\frac{1}{x+10}[/tex] for [tex]x\neq -10[/tex]


which expression is equal to f(x) + g(x)?

A. [tex]\frac{2x-12}{x^2+6x-40}[/tex]

B. [tex]\frac{2x-20}{x^2+6x-40}[/tex]

C. [tex]\frac{x-15}{x^2+6x-40}[/tex]

D. [tex]\frac{x-15}{x^2+7x-30}[/tex]

PLEASE HELP 25 PTSConsider function f and gtexfxfracx16x26x40tex for texxneq10tex and texxneq 4textexgxfrac1x10tex for texxneq 10texwhich expression is equal to class=

Respuesta :

msm555

Answer:

Solution given:

[tex]f(x)=\frac{x-16}{x^2+6x-40}[/tex]

[tex]g(x)=\frac{1}{x+10}[/tex]

now

f(x)+g(x)=[tex]\frac{x-16}{x^2+6x-40}+\frac{1}{x+10}[/tex]....(1)

now

factoring x²+6x-40

we get

x²+10x-4x-40

x(x+10)-4(x+10)

(x+10)(x-4)

now substituting in equation 1 ,we get

f(x)+g(x)=[tex]\frac{x-16}{(x+10)(x-4)}+\frac{1}{x+10}[/tex]

taking l.c.m

=[tex]\frac{(x-16)+(x-4)}{(x-10)(x-4)}[/tex]

=now

opening bracket

[tex]\frac{x-16+x-4}{x²-10x-4x+40}[/tex]

=[tex]\frac{2x-20}{x²+6x-40}[/tex]

So

answer is :

B. [tex]\bold b\frac{2x-20}{x^2+6x-40}[/tex]