Respuesta :
When a shape is reflected, it must be reflected across a line
The coordinates of the vertices of [tex]\triangle A'B'C[/tex] after reflection across:
- The x-axis is: [tex]A' = (9,3)[/tex] Â [tex]B' =(6,-4)[/tex] Â Â [tex]C =(-1,5)[/tex].
- The y-axis is [tex]A' = (-9,-3)[/tex] Â Â [tex]B' =(-6,4)[/tex] Â Â [tex]C =(1,-5)[/tex]
Given
[tex]A = (9,-3)[/tex]
[tex]B = (6,4)[/tex]
[tex]C =(-1,-5)[/tex]
The complete question requires that [tex]\triangle ABC[/tex] be transformed using the following rules of transformation.
[tex](a)\ R_{x\ axis}[/tex]
[tex](b)\ R_{y\ axis}[/tex]
[tex](a)\ R_{x\ axis}[/tex]
The rule of reflection across the x-axis is:
[tex](x,y) \to (x,-y)[/tex]
This means that we negate the y-coordinate of [tex]\triangle ABC[/tex]
So, we have:
[tex]A' = (9,3)[/tex]
[tex]B' =(6,-4)[/tex]
[tex]C =(-1,5)[/tex]
[tex](b)\ R_{y\ axis}[/tex]
The rule of reflection across the y-axis is:
[tex](x,y) \to (-x,y)[/tex]
This means that we negate the x-coordinate of [tex]\triangle ABC[/tex]
So, we have:
[tex]A' = (-9,-3)[/tex]
[tex]B' =(-6,4)[/tex]
[tex]C =(1,-5)[/tex]
Hence, the coordinates of the vertices of [tex]\triangle A'B'C[/tex] after reflection across:
- The x-axis is: [tex]A' = (9,3)[/tex] Â [tex]B' =(6,-4)[/tex] Â Â [tex]C =(-1,5)[/tex].
- The y-axis is [tex]A' = (-9,-3)[/tex] Â Â [tex]B' =(-6,4)[/tex] Â Â [tex]C =(1,-5)[/tex]
Read more about reflections at:
https://brainly.com/question/17983440