Respuesta :

Answer:

[tex]f = \frac{2(3g-5)}{d}[/tex]

Step-by-step explanation:

Given the equation, [tex]\frac{df + 10}{6} = g[/tex], for f:

Multiply 6 on both sides of the equation to remove the denominator on the left-hand side:

    [tex](\frac{6}{1})(\frac{df + 10}{6} ) = g(\frac{6}{1})[/tex]

    df + 10 = 6g

Next, subtract 10 on both sides of the equation:

    df + 10 - 10 = 6g - 10

    df = 6g - 10

Factor 6g - 10:  

    df = 2(3g - 5)

Multiply both sides by (1/d) to isolate f:

[tex](\frac{1}{d}) df = 2(3g - 5)(\frac{1}{d})[/tex]

[tex]f = \frac{2(3g-5)}{d}[/tex]