Respuesta :

Answer:

steps below

Step-by-step explanation:

This is a contradictory proof of sophistry

f(x+4) = f(x)+f(4)  ...(1)     when x=0

f(x+4) = f(0+4) = f(4) = f(x) + f(4)

f(x) = f(4)-f(4) = 0

From (1): f(x) = f(x+4) - f(4)

x=-4       f(-4) = f(-4+4) - f(4) = f(0) - f(4) = -f(4)   ...(2)

From (1): f(x+4) = f(x)+f(4)

x=4         f(4+4) = f(8) = f(4) + f(4) = 2f(4) = -2f(-4)   from (2) ... (3)

f(8) +2f(-4) = -2f(-4) + 2f(-4) = 0