Respuesta :

Expressions that have the square root sign are said to be radicals.

The simplified form of [tex]-6i\sqrt{-44}[/tex] is [tex]12\sqrt{11}[/tex]

The expression is given as:

[tex]-6i\sqrt{-44}[/tex]

Start by splitting the expression

[tex]-6i\sqrt{-44} = -6 \times i \times \sqrt{-44}[/tex]

Factorize -44

[tex]-6i\sqrt{-44} = -6 \times i \times \sqrt{-1} \times \sqrt{44}[/tex]

In complex numbers;

[tex]i = \sqrt{-1[/tex]

So, we have:

[tex]-6i\sqrt{-44} = -6 \times \sqrt{-1} \times \sqrt{-1} \times \sqrt{44}[/tex]

Express [tex]\sqrt{-1} \times \sqrt{-1}[/tex] as [tex]-1[/tex]

[tex]-6i\sqrt{-44} = -6 \times -1 \times \sqrt{44}[/tex]

[tex]-6i\sqrt{-44} = 6 \times \sqrt{44}[/tex]

Express 44 as 4 x 11

[tex]-6i\sqrt{-44} = 6 \times \sqrt{4} \times \sqrt{11}[/tex]

Express [tex]\sqrt 4[/tex] as [tex]2[/tex]

[tex]-6i\sqrt{-44} = 6 \times 2 \times \sqrt{11}[/tex]

[tex]-6i\sqrt{-44} = 12 \times \sqrt{11}[/tex]

[tex]-6i\sqrt{-44} = 12\sqrt{11}[/tex]

Hence, the simplified expression is: [tex]12\sqrt{11}[/tex]

Read more about radical expressions at:

https://brainly.com/question/1810591