Respuesta :

Answer:

[tex]\frac{25}{18}[/tex]

Step-by-step explanation:

Hi there!

We want to evaluate the expression [tex]4(\frac{1}{9} + e^2)+3f[/tex] if [tex]e=\frac{1}{3}[/tex], and [tex]f=\frac{1}{6}[/tex]

We can first simplify the expression down.

Do the distributive property:

[tex]\frac{4}{9} + 4e^2 + 3f[/tex]

Now substitute 1/3 for e and 1/6 for f:

[tex]\frac{4}{9} + 4(\frac{1}{3})^2 + 3(\frac{1}{6})[/tex]

According to the order of operations, raise 1/3 to the second power:

[tex]\frac{4}{9} +4 * \frac{1}{9}[/tex] + [tex]3(\frac{1}{6})[/tex]

Multiply

[tex]\frac{4}{9} + \frac{4}{9} + 3(\frac{1}{6})[/tex]

Multiply the 3(1/6)

[tex]\frac{4}{9} + \frac{4}{9} + \frac{1}{2}[/tex]

Simplify

[tex]\frac{8}{9} + \frac{1}{2}[/tex]

Find the common denominator and add together

[tex]\frac{16}{18} + \frac{9}{18}[/tex]

Simplify again

[tex]\frac{25}{18}[/tex]

The answer can be left as that.

Hope this helps!