Respuesta :

SAS Postulate, as that is what SUR and TVR give. 

Answer with explanation:

In Δ S RT and Δ V RU

ST ║ UV

→ ∠U RV = ∠S RT⇒Vertically opposite angles

→∠RST=∠RVU→→Alternate interior angles as, ST ║ UV.

Also, ∠RU V=∠ R T S→→Alternate interior angles as, ST ║ UV.

Δ S RT ~ Δ V RU⇒[AAA]

When triangles are similar their sides are proportional.

[tex]\frac{SR}{RV}=\frac{TR}{RU}[/tex]

In Δ S RU and ΔTR V

∠ S RU = ∠TR V⇒Vertically opposite angles

[tex]\frac{SR}{RV}=\frac{TR}{RU}[/tex]

Δ S RU ~ ΔTR V→→[S A S]

So,  ΔS UR=ΔT V R , by SAS postulate

Option B