Respuesta :
Square of quantity x plus three means : x+3/√
quantity x plus eight means : (x+8)
quantity x minus two means : (x−2)
Therefore : f(x)=x+3 / √(x+8)×(x−2)
R:x≥−3
quantity x plus eight means : (x+8)
quantity x minus two means : (x−2)
Therefore : f(x)=x+3 / √(x+8)×(x−2)
R:x≥−3
Answer:
[-3,2)U(2,∞) domain of the function
Step-by-step explanation:
We have given function : [tex]f(x) =\frac{\sqrt{x+3}}{(x+8)(x-2)}[/tex]
To find : The domain of the given function
Solution : Domain is where the function is defined
So, we distribute the function,
1) [tex]f(x) =\sqrt{x+3}[/tex]
[tex]x\geq-3[/tex]
2) [tex]f(x) =(x+8)(x-2)[/tex]
[tex]x<2[/tex]
Therefore, the domain of the function
[-3,2)U(2,∞)
or x∈real no. : -3≤x<2