Respuesta :

The answer is: m∡ KTL = 66°
___________________________
Given: m∡3 = m∡4 = 123° ;

Since the sum of ALL ANGLES in ANY TRIANGLE equal 180°; 
 
    →  the m∡ KTL = 180 − ( m∡ KLT  + m∡TKL) 


We want to find

1) m∡ KLT  ; AND:
2) m∡ TKL   ,'
_____________
{Note: Alternatively, "m∡ KLT" can be written as: "m∡ TLK" ; and:
           "m∡ TKL" can be written as: "m∡ LKT" . }.
________________________________________________
Since the sum of ALL ANGLES in ANY TRIANGLE equal 180; 
 
     → m∡ KTL = 180 − ( m∡ KLT  + m∡TKL) ; 
___________________________________________
Or: →  m∡ KTL = 180 −  m∡ KLT  −  m∡TKL ; 

Since, the distributive property of multiplication states:
________________________________
    →  a* (b + c) = ab + ac ; AND
    →  a *(b − c) = ab − ac  
______________________________
Thus: m∡ KTL = 180 − ( m∡ KLT  + m∡TKL) =
 
→      180 − 1( m∡ KLT  +  m∡TKL ) ;
_____________________________________
→Note: The invisible "1" is implied, since anything multiplied by "1" equals that same value.   We treat this as "-1" (negative one), due to the "minus sign).
_______________________________________
           →  -1 * ( m∡ KLT  +  m∡ TKL ) =

           →  -1 * (1 m∡ KLT + 1 m∡TKL ) =
          
           → (-1 * 1 m∡ KLT)  + ( -1 * 1 m∡TKL ) =

           → (-1 m∡ KLT)       + ( -1 m∡TKL) = 

           →  -1 m∡ KLT − 1 m∡TKL    ; 
_________________________________
Now, bring down the "180" and rewrite: 
_____________________________________
→ 180 − 1 m∡ KLT − 1 m∡TKL ;  →  Delete the "ones" ; and Rewrite:
__________________________________________
→ 180 − m∡ KLT − m∡TKL ; 
_______________________
      → m∡ KTL = 180 − m∡ KLT − m∡TKL = 180 − (m∡ KLT + m∡TKL) ;
__________________________________________________________
→Now, solve for: m∡ KLT ;
_____________________________
→Using the diagram; m∡ KLT = 180 − m∡4 ; Given m∡4 = 123; and 
 ∡4 and ∡KLT are supplementary angles [the only two (2) angles on a particular straight line]; the sum of m∡4 and m∡KLT = 180.

           →  m∡ KLT = 180 − m∡4 = 180 − 123 = 57 .
_____________________________________________
→Now, solve for: m∡TKL  ;
______________________________
 →Using the diagram; m∡ TKL = 180 − m∡3 ; Given m∡3 = 123; and 
 ∡3 and ∡TKL are supplementary angles [the only two (2) angles on a particular straight line]; the sum of m∡3 and m∡KLT = 180.

             →  m∡ KLT = 180 − m∡4 = 180 − 123 = 57 
______________________________________________
→So, in our "triangle":  ΔKTL; we want to find the m∡T;  that is m∡KTL; 
____________________________________________
    We know that each of the other 2 (two) angles in this triangles measures 57° .
______________
So, we calculate as follows:
____________________________
Method 1:
___________
 m∡ KTL = 180 − ( m∡ KLT  + m∡TKL)
             =  180 − ( 57 + 57) = 66° .
___________________________________________
Or:  Method 2: 
___________________________________________
 m∡ KTL =  180 − ( m∡ KLT  + m∡TKL) 
              =  180 − ( 57 + 57)
              =  180 − (57 * 2) = 180 − 114 = 66° . 
________________________________________
Or: Method 3:  
_________________________
→  m∡ KTL = 180 −  m∡ KLT  −  m∡TKL
                  = 180 − 57 − 57 = 66° .
______________________________________________________
Answer:  m∡ KTL = 66° .
_______________________________________________________
→ Let us check our answer to see if it "makes sense": 
____________________________________
66 + 57 + 57 =? 180?

66 + 57 = 123;   123 + 57 =? 180 ? Yes!
______________________________________________