Respuesta :

I dont think any of these are. I get a linear factor of (x-2)

Answer:

None of the above

Step-by-step explanation:

We are given that an expression

[tex]x^6+x-66[/tex]

We have to find which expression is a linear factor of given expression.

1.[tex]x+1[/tex]

[tex]x+1=0[/tex]

[tex]x=-1[/tex]

Factor theorem: if x+a is factor of polynomial  P(x) then

P(a)=0=Remainder .

If p(a)=0 then x+a is a factor of p(x)

By factor theorem

[tex](-1)^6-1-66=-66\neq 0[/tex]

Hence, x+1 is not  a linear factor of given expression.

2.[tex]x+2[/tex]

[tex]x=-2[/tex]

By factor theorem

[tex](-2)^6-2-66=64-2-66-4\neq 0[/tex]

Hence, x+2 is not a linear factor of given expression.

3.x+4

[tex]x=-4[/tex]

By factor theorem

[tex](-4)^6-4-66=4096-4-66=4026\neq [/tex]

Hence, x+4 is not a linear factor of given expression.

Answer: None of the above