Respuesta :
A central angle:
α = 170°
d = 9.1 cm
r = 9.1 : 2 = 4.55 cm
Area of a sector:
A = r² π α / 360°
A = ( 4.55 )² · 3.14 · 170° / 360°
A = 30.7 cm²
α = 170°
d = 9.1 cm
r = 9.1 : 2 = 4.55 cm
Area of a sector:
A = r² π α / 360°
A = ( 4.55 )² · 3.14 · 170° / 360°
A = 30.7 cm²
Answer:
The area of sector is 30.7 cm².
Step-by-step explanation:
The diameter of a circle is 9.1 cm, so the radius of the circle is
[tex]r=\frac{d}{2}=\frac{9.1}{2}=4.55[/tex]
The central angle of a sector is 170°.
The area of a sector is
[tex]A=\pi r^2\times (\frac{\theta}{360})[/tex]
Where, r is radius and θ is central angle.
[tex]A=\pi (4.55)^2\times (\frac{170}{360})[/tex]
[tex]A=30.712777[/tex]
[tex]A\approx 30.7[/tex]
Therefore the area of sector is 30.7 cm².