Respuesta :

If sin x = opposite / hypothenus = 1/2, then
adjacent = sqrt(hyp^2 - opp^2) = sqrt(2^2 - 1^2) = sqrt(4 - 1) = √3
cos x = adjacent / hypothenus = √3/2
tan x = opposite / adjacent = 1/√3

Answer:

Step-by-step explanation:

It is given that the value of sinx is [tex]\frac{1}{2}[/tex].

Since, we know that [tex]sinx=\frac{Perpendicular}{hypotenuse}=\frac{1}{2}[/tex], thus value of perpendicular is 1 and hypotenuse is 2.

Now, the value of the base will be:

[tex](Hyp)^{2}=(base)^{2}+(Perpendicular)^{2}[/tex]

[tex](2)^2=(B)^2+(1)^2[/tex]

[tex]4-1=(B)^2[/tex]

[tex]Base=\sqrt{3}[/tex]

Now, the value of [tex]tanx=\frac{P}{B}=\frac{1}{\sqrt{3}}[/tex] and the value of [tex]cosx=\frac{B}{H}=\frac{\sqrt{3}}{2}[/tex].