Respuesta :
a1 = 2
a2 = 2(4) = 8
a3 = 2(4)^2 = 2(16) = 32
a4 = 2(4)^3 = 2(64) = 128
a5 = 2(4)^4 = 2(256) = 512
a6 = 2(4)^5 = 2(1024) = 2,048
a2 = 2(4) = 8
a3 = 2(4)^2 = 2(16) = 32
a4 = 2(4)^3 = 2(64) = 128
a5 = 2(4)^4 = 2(256) = 512
a6 = 2(4)^5 = 2(1024) = 2,048
The first six terms of a sequence where a₁ = 2 and r = 4 are:
- a₁ = 2
- a₂ = 8
- a₃ = 32
- a₄ = 128
- a₅ = 512
- a₆ = 2,048
How can the sequence be graphed?
The first term is:
a₁ = 2
r will then multiply the first term and then be increased by succeeding powers.
an = 2 (r) ^(n - 1)
a₂ = 2 (4) = 8
a₃ = 2 (4)² = 32
a₄ = 2 (4)³ = 128
a₅ = 2 (4)⁴ = 512
a₆ = 2 (4)⁵ = 2,048
Find out more on expanding sequences at https://brainly.com/question/20886273.
#SPJ5