9514 1404 393
Answer:
- g(x) = 14x +7
- g(x) = 7x -18
- g(x) = -7x -16
- g(x) = 21x +17
Step-by-step explanation:
The transformations of interest here are ...
- g(x) = b·f(x) . . . . vertical scaling by a factor of b
- g(x) = f(-x) . . . . . reflection across the y-axis
- g(x) = f(x -h) +k . . . translation h units right and k units up
1. The transformation parameters are given as b=2, (h, k) = (0, -3). Then we have ...
f1(x) = 2f(x) = 2(7x +5) = 14x +10 . . . . . vertical stretch by 2
g(x) = f1(x -0) -3 = 14(x -0) +10 -3
g(x) = 14x +7
__
2. (h, k) = (3, -2)
g(x) = f(x -3) -2 = 7(x -3) +5 -2 = 7x -21 +3
g(x) = 7x -18
__
3. The reflection gives us ...
f1(x) = f(-x) = 7(-x) +5 = -7x +5
Then the translation 3 left is (h, k) = (-3, 0).
g(x) = f1(x -(-3)) +0 = -7(x +3) +5 = -7x -21 +5
g(x) = -7x -16
__
4. The transformation parameters are b = 3 and (h, k) = (0, 2).
f1(x) = 3f(x) = 3(7x +5) = 21x +15 . . . . . . vertical stretch by 3
g(x) = f1(x) +2 = 21x +15 +2
g(x) = 21x +17