Respuesta :

Answer:

p = -10

shortest side (a) = 5

longest side (b) = 12

Step-by-step explanation:

QUESTION 2: Solve for p by isolating the variable.

3/4 p - 1/4 p + 3 = -2  ----- subtract 3 from both sides

3/4 p - 1/4 p = -5  

2/4 p = -5  ----- simplify 2/4

1/2 p = -5  ------ multiply 2 on both sides

p = -10

QUESTION 3:

Perimeter of a triangle = a + b + c

a = x

b = 3x - 3

c = 2x

x + 2x + 3x - 3 = 27 cm  ------ combine like terms

6x - 3 = 27   ----- add 3 on both sides

6x = 30

x =5   ------- substitute 5 everywhere you see "x" for the side values

side a = x = 5

side b = 3x - 3 = 3(5) - 3 = 12

side c = 2x = 2(5) = 10

shortest side (a) = 5

longest side (b) = 12

Answer:

Answer to question 2:

[tex]\frac{\left(3\right)}{\left(4\right)}p-\frac{\left(1\right)}{\left(4\right)}p+3=-2\quad :\quad p= ?[/tex]

[tex]\frac{\left(3\right)}{\left(4\right)}p-\frac{\left(1\right)}{\left(4\right)}p+3=-2[/tex]

[tex]\frac{3}{4}p-\frac{1}{4}p+3=-2[/tex]

[tex]\mathrm{Subtract\:}3\mathrm{\:from\:both\:sides}[/tex]

[tex]\frac{3}{4}p-\frac{1}{4}p+3-3=-2-3[/tex]

[tex]\mathrm{Simplify}[/tex]

[tex]\frac{3}{4}p-\frac{1}{4}p=-5[/tex]

[tex]Simplify\\[/tex]

[tex]2p=-20[/tex]

[tex]\mathrm{Divide\:both\:sides\:by\:}2[/tex]

[tex]\frac{2p}{2}=\frac{-20}{2}[/tex]

[tex]p=-10[/tex]

_____________________________________

Answer to question 3

Measure of the shortest side is 5 cm

Measure of the longest side is 12 cm

Given:

Perimeter of ∆ = 27 cm

Side lengths of ∆: x, 2x, and 3x - 3

Required:

Measure of the shortest side and measure of the longest side.

Sum of all sides of the ∆ = Perimeter

Solve for x

Collect like terms

Add 3 to both sides

Divide both sides by 6

Length of each side of the ∆:

x = 5 cm

2x = 2(5) = 10 cm

3x - 3 = 3(5) - 3 = 15 - 3 = 12 cm

Measure of the shortest side is 5 cm

Measure of the longest side is 12 cm

Step-by-step explanation: