Respuesta :

Answer:

  • x = 3.08

Step-by-step explanation:

Area formula:

  • A = 1/2bh

The height is:

  • h = (x + 2)sin 45° =  (x + 2) ×√2/2

Substitute the value for area and set equation:

  • 4√2 = 1/2 ×  (2x - 3) × √2(x + 2)/2
  • (2x - 3)(x + 2) = 16
  • 2x² + x - 6 = 16
  • 2x² + x - 22 = 0
  • D = 1 + 4*2*22 = 177
  • x = (-1 + √177)/4 = 3.08 (rounded)    

Note the second root ignored as negative

Answer:

x = 3.08  (3 s.f.)

Step-by-step explanation:

Area of a Triangle (using sine)

 [tex]\sf Area=\dfrac{1}{2}ac \sin B[/tex]

where:

  • a and c are adjacent sides
  • B is the included angle

Given:

  • Area = 4√2 m²
  • a = (2x - 3) m
  • c = (x + 2) m
  • B = 45°

Substitute the given values into the formula:

[tex]\implies 4\sqrt{2}=\dfrac{1}{2}(2x-3)(x+2) \sin 45^{\circ}[/tex]

[tex]\implies 8\sqrt{2}=(2x-3)(x+2) \sin 45^{\circ}[/tex]

[tex]\implies 8\sqrt{2}=(2x-3)(x+2) \left(\dfrac{\sqrt{2}}{2}\right)[/tex]

[tex]\implies 8\sqrt{2}\left(\dfrac{2}{\sqrt{2}}\right)=(2x-3)(x+2)[/tex]

[tex]\implies (2x-3)(x+2) =16[/tex]

[tex]\implies 2x^2+4x-3x-6=16[/tex]

[tex]\implies 2x^2+x-22=0[/tex]

Use the Quadratic Formula to solve for x:

[tex]x=\dfrac{-b \pm \sqrt{b^2-4ac} }{2a}\quad\textsf{when }\:ax^2+bx+c=0[/tex]

[tex]\implies a=2, \quad b=1, \quad c=-22[/tex]

[tex]\implies x=\dfrac{-1 \pm \sqrt{1^2-4(2)(-22)} }{2(2)}[/tex]

[tex]\implies x=\dfrac{-1 \pm \sqrt{177}}{4}[/tex]

[tex]\implies x=3.08, -3.58\:\: \sf (3 \:s.f.)[/tex]

As distance is positive:

[tex]\implies x=3.08 \:\:(3 \sf \:s.f.) \:\textsf{only}[/tex]