Respuesta :
Hello Carousel!
[tex] \huge \boxed{\mathfrak{Question} \downarrow}[/tex]
[tex] \huge \tt\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }[/tex]
[tex] \large \boxed{\mathfrak{Answer \: with \: Explanation} \downarrow}[/tex]
[tex]\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) } \\ [/tex]
To start solving this question, note that ⇨ for any 2 differentiable functions, the derivative of the quotient of the 2 functions will be the denominator multiplied by the derivative of the numerator minus the numerator again multiplied by the derivative of the denominator whole divided by the denominator². By doing all these steps, we'll get it as..
[tex]\frac{\left(x^{1}-5\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{2}-2)-\left(3x^{2}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-5)}{\left(x^{1}-5\right)^{2}} \\ [/tex]
Remember that the derivative of the polynomial will be the sum of the derivatives of its terms. We know that, the derivative of a constant term is 0 & the derivative of [tex]ax^{n}[/tex] is [tex]nax^{n-1}[/tex]. So..
[tex]\frac{\left(x^{1}-5\right)\times 2\times 3x^{2-1}-\left(3x^{2}-2\right)x^{1-1}}{\left(x^{1}-5\right)^{2}} \\ [/tex]
Now, simplify it..
[tex]\frac{\left(x^{1}-5\right)\times 2\times 3x^{2-1}-\left(3x^{2}-2\right)x^{1-1}}{\left(x^{1}-5\right)^{2}} \\ = \frac{\left(x^{1}-5\right)\times 6x^{1}-\left(3x^{2}-2\right)x^{0}}{\left(x^{1}-5\right)^{2}} \\ = \frac{x^{1}\times 6x^{1}-5\times 6x^{1}-\left(3x^{2}x^{0}-2x^{0}\right)}{\left(x^{1}-5\right)^{2}} \\ = \frac{6x^{1+1}-5\times 6x^{1}-\left(3x^{2}-2x^{0}\right)}{\left(x^{1}-5\right)^{2}} \\ = \frac{6x^{2}-30x^{1}-\left(3x^{2}-2x^{0}\right)}{\left(x^{1}-5\right)^{2}} \\ = \frac{6x^{2}-30x^{1}-3x^{2}-\left(-2x^{0}\right)}{\left(x^{1}-5\right)^{2}} \\ = \frac{\left(6-3\right)x^{2}-30x^{1}-\left(-2x^{0}\right)}{\left(x^{1}-5\right)^{2}} \\ = \frac{3x^{2}-30x^{1}-\left(-2x^{0}\right)}{\left(x^{1}-5\right)^{2}} \\ = \frac{3x^{2}-30x-\left(-2\right)}{\left(x-5\right)^{2}} \\ = \large \boxed{\boxed{ \bf \frac{3x^{2}-30x + 2}{\left(x-5\right)^{2}} }}[/tex]
- You can further simplify the answer to [tex]\underline{\underline{\frac{146}{\left(x-5\right)^{3}}}}\\[/tex]
__________________
Hope it'll help you!
ℓu¢αzz ッ