Respuesta :

Answer:

[tex]variables \: with \: no \: exponent \\ \: stay \: inside \: the \: radical[/tex]

[tex] variables \: raised \: to \: power \: 1 \: or \: (-1) \\ \: stay \: inside \: the \: radical[/tex]

variables raised to an even exponent: Half the exponent taken out, nothing remains inside the radical. examples:

[tex] \sqrt{x {}^{8} } = {x}^{4} [/tex]

[tex] \sqrt{x {}^{ - 6} } = x {}^{ - 3} [/tex]variables raised to an odd exponent which is >2 or <(-2) , examples:

[tex] \sqrt {x}^{5} )= {x}^{2} • \sqrt(x)[/tex]

[tex] \sqrt{(x {}^{ - 7}) } = x {}^{ - 3} • \sqrt{x {}^{ - 1} } [/tex]

Applying these rules to our case we find out that:

[tex] \sqrt{( {x}^{2}) } = x[/tex]

can you provide more information