Respuesta :
Answer:
[tex]variables \: with \: no \: exponent \\ \: stay \: inside \: the \: radical[/tex]
[tex] variables \: raised \: to \: power \: 1 \: or \: (-1) \\ \: stay \: inside \: the \: radical[/tex]
variables raised to an even exponent: Half the exponent taken out, nothing remains inside the radical. examples:
[tex] \sqrt{x {}^{8} } = {x}^{4} [/tex]
[tex] \sqrt{x {}^{ - 6} } = x {}^{ - 3} [/tex]variables raised to an odd exponent which is >2 or <(-2) , examples:
[tex] \sqrt {x}^{5} )= {x}^{2} • \sqrt(x)[/tex]
[tex] \sqrt{(x {}^{ - 7}) } = x {}^{ - 3} • \sqrt{x {}^{ - 1} } [/tex]
Applying these rules to our case we find out that:
[tex] \sqrt{( {x}^{2}) } = x[/tex]