Answer:
24
Explanation:
You have to find the distance between two points three times
D = [tex]\sqrt{(x_{1}-x_{2})^2 + (y_{1} - y_{2})^2[/tex]
1. Distance between (3,-2) (5, -8) = [tex]\sqrt{(3 - 5)^2+ [-2 - (-8)]^2}[/tex] = [tex]\sqrt{(-2)^2 + (6)^2}[/tex]
= [tex]\sqrt{4 + 36}[/tex] = [tex]\sqrt{40}[/tex]
2. Distance between (5, -8) (-2, 1) [tex]\sqrt{[5 - (-2)]^2 + (-8- 1)^2 }[/tex] = [tex]\sqrt{(7)^2 + (-9)^2 }[/tex]
= [tex]\sqrt{49 + 81}[/tex] = [tex]\sqrt{130}[/tex]
3. Distance between (-2, 1)(3, -2) = [tex]\sqrt{(-2 - 3)^ + [1 -(-2)]^2}[/tex] = [tex]\sqrt{(-5)^2 + (3)^2}[/tex]
= [tex]\sqrt{25 + 9}[/tex] = [tex]\sqrt{34}[/tex]
Perimeter = distance 1 + distance 2 + distance 3
= [tex]\sqrt{40}[/tex] + [tex]\sqrt{130}[/tex] + [tex]\sqrt{34}[/tex]
= 6.32 + 11.40 + 5.83
= 23.55 ≈ 24