Answer:
The identity is: cos(x+y)cos(x-y) = cos^2(x) - sin^2(y). Â Answer to part (b) is 1/4
Step-by-step explanation:
cos(x+y) = cos(x) cos(y) - sin(x)sin(y)
cos(x-y) = cos(x)cos(y) + sin(x)sin(y)
For convenience, let A = cos(x) cos(y), and B = sin(x) sin(y).
Thus,
cos(x+y) = A - B
cos(x-y) = A + B, and
cos(x+y) cos(x-y) = (A-B)(A+B) = A^2 - B^2 = cos^2(x) cos^2(y) - sin^2(x)sin^2(y) = (1 - sin^2(x))(1 - sin^2(y)) - sin^2(x) sin^2(y) =
1 - sin^2(x) - sin^2(y) + sin^2(x) sin^2(y) - sin^2(x) sin^2(y) =
1 - sin^2(x) - sin^2(y) =
cos^2(x) - sin^2(y)
(b) Let x=45, and y=30, so we have that
cos(75)cos(15) = cos(45+30) cos(45-30) =
cos^2(45) - sin^2(30) =
(sqrt(2)/2)^2 - (1/2)^2 =
2/4 - 1/4 =
1/4