Answer:
y = - [tex]\frac{5}{2}[/tex] x + [tex]\frac{31}{2}[/tex]
Step-by-step explanation:
Calculate the slope m of BC using the slope formula
m = [tex]\frac{y_{2}-y_{1} }{x_{2}-x_{1} }[/tex]
with (x₁, y₁ ) = B (7, 5 ) and (x₂, y₂ ) = C (2, 3 )
[tex]m_{BC}[/tex] = [tex]\frac{3-5}{2-7}[/tex] = [tex]\frac{-2}{-5}[/tex] = [tex]\frac{2}{5}[/tex]
Given a line with slope m then the slope of a line perpendicular to it is
[tex]m_{perpendicular}[/tex] = - [tex]\frac{1}{m}[/tex] = - [tex]\frac{1}{\frac{2}{5} }[/tex] = - [tex]\frac{5}{2}[/tex] , then
y = - [tex]\frac{5}{2}[/tex] x + c ← is the partial equation
To find c substitute A (3, 8 ) into the partial equation
8 = - [tex]\frac{15}{2}[/tex] + c ⇒ c = 8 + [tex]\frac{15}{2}[/tex] = [tex]\frac{16}{2}[/tex] +[tex]\frac{15}{2}[/tex] = [tex]\frac{31}{2}[/tex]
y = - [tex]\frac{5}{2}[/tex] x + [tex]\frac{31}{2}[/tex] ← equation of perpendicular line