Respuesta :
Solution:
[tex] \frac{10}{ \sqrt{7} - \sqrt{2} } \\ = \frac{10}{ \sqrt{7} - \sqrt{2} } \times \frac{ \sqrt{7} + \sqrt{2} }{ \sqrt{7} + \sqrt{2} } \\ = \frac{10( \sqrt{7} + \sqrt{2}) }{( \sqrt{7} - \sqrt{2} )( \sqrt{7} + \sqrt{2} )} \\ = \frac{10 \sqrt{7} + 10 \sqrt{2} }{( { \sqrt{7} )}^{2} - ( \sqrt{2} ) ^{2} } \\ = \frac{10( \sqrt{7} + \sqrt{2} )}{7 - 2} \\ = \frac{10( \sqrt{7} + \sqrt{2} ) }{5} \\ = 2( \sqrt{7} + \sqrt{2} ) \\ = 2 \sqrt{7} + 2 \sqrt{2} [/tex]
[tex]\frac{10}{\sqrt{7} } -\sqrt{2} =\frac{10\sqrt{7} -7\sqrt{2} }{7}[/tex]
( Decimal: [tex]2.36543...[/tex])
Steps:
1: Convert element to fraction.
[tex]\sqrt{2} =\frac{\sqrt{2}\sqrt{7} }{\sqrt{7} }[/tex]
[tex]=\frac{10}{\sqrt{7} } -\frac{\sqrt{2} \sqrt{7} }{\sqrt{7} }[/tex]
2: Since denominator are equal, combine the fractions.
[tex]\frac{a}{c}[/tex] ± [tex]\frac{b}{c} =\frac{a+b}{c}[/tex]
[tex]=\frac{10-\sqrt{2} \sqrt{7} }{\sqrt{7} }[/tex]
-----------------------
[tex]\sqrt{2} \sqrt{7} =\sqrt{14}[/tex]
[tex]=\frac{10-\sqrt{14} }{\sqrt{7} }[/tex]
Rationalize [tex]\frac{10-\sqrt{14} }{\sqrt{7} }[/tex] : [tex]\frac{10\sqrt{7} -7\sqrt{2} }{7}[/tex]
[tex]=\frac{10\sqrt{7}-7\sqrt{2} }7}[/tex]