Respuesta :
Answer:
ln (1 + sin^2(x)) + C
Step-by-step explanation:
Note that sin(2x) = 2 sin(x) cos(x).
So, the integrand is rewritten as:
(2 sin(x) cos(x)) / (1 + sin^2(x) ).
Now, make the substitution u = sin(x), so that du = cos(x) dx. Thus, in terms of the variable u, the integrand is
(2 u )/(1 + u^2).
Make another substitution v = 1 + u^2, so that dv = 2 u du, and the integrand in terms of v is
1 / v
Now, we integrate, and then back substitute to write that the indefinite integral is
ln |v| + C = ln |1 + u^2| + C = ln |1 + sin^2(x)| + C + ln (1 + sin^2(x)) +C, since 1 + sin^2(x) + 1 is positive for all real x.
Step-by-step explanation:
[tex]\large\underline{\sf{Solution-}}[/tex]
We have to evaluate the given integral.
[tex] \displaystyle \rm = \int \dfrac{ \sin(2x) }{1 + \sin^{2} (x) } \: dx[/tex]
[tex] \displaystyle \rm = \int \dfrac{2 \sin(x) \cos(x) }{1 + \sin^{2} (x) } \: dx[/tex]
Now let us assume that:
[tex] \rm \longmapsto u = 1 + { \sin}^{2}(x)[/tex]
[tex] \rm \longmapsto \dfrac{du}{dx} = 2 \sin(x) \cos(x) [/tex]
[tex] \rm \longmapsto dx = \dfrac{1}{2 \sin(x) \cos(x) } \: du[/tex]
Therefore, the integral becomes:
[tex] \displaystyle \rm = \int \dfrac{1}{u} \: du[/tex]
[tex] \displaystyle \rm = \ln(u) + C[/tex]
[tex] \displaystyle \rm = \ln(1 + sin^{2}x ) + C[/tex]
Therefore:
[tex] \displaystyle \rm \longmapsto \int \dfrac{ \sin(2x) }{1 + \sin^{2} (x) } \: dx = \ln(1 + sin^{2}x ) + C[/tex]