The dish illustrates operations on a parabola.
The depth of the parabolish dish is 160 feet.
The bowl is said to be a parabola.
So, we have:
[tex]\mathbf{(x -h)^2 = 4p(y - k)}[/tex]
Where:
[tex]\mathbf{Focus: p = 40}[/tex]
[tex]\mathbf{Vertex:(h,k) = (0,0)}[/tex]
From the question, the diameter is 160 feet.
So, the radius (r) is:
[tex]\mathbf{r = \frac{160}{2} = 80}[/tex]
So, the coordinate of the depth of the parabola would be:
[tex]\mathbf{(x,y) = (60 + 100,y)}[/tex]
[tex]\mathbf{(x,y) = (160,y)}[/tex]
Substitute these values in [tex]\mathbf{(x -h)^2 = 4p(y - k)}[/tex]
So, we have:
[tex]\mathbf{(160 - 0)^2 = 4 \times 40 \times (y -0)}[/tex]
[tex]\mathbf{160^2 = 160y}[/tex]
Divide both sides by 160
[tex]\mathbf{160 = y}[/tex]
Rewrite as:
[tex]\mathbf{y = 160 }[/tex]
Hence, the depth of the parabolish dish is 160 feet.
Read more about parabolas at:
https://brainly.com/question/4074088