Given the function, f(x) = 3x + 6, we can solve for f(a), f(a + h) and [tex]\frac{(f(a + h) - f(a)) }{h}[/tex] by substituting their values into f(x) = 3x + 6. We will have the following:
[tex]\mathbf{f(a) = 3a + 6}\\\\\mathbf{f(a + h) = 3a + 3h + 6}\\\\\mathbf{\frac{(f(a + h) - f(a)) }{h} = 6}[/tex]
Given:
We are told to find:
1. Find f(a):
f(a) = 3(a) + 6
f(a) = 3a + 6
2. Find f(a + h):
f(a + h) = 3(a + h) + 6
f(a + h) = 3a + 3h + 6
3. Find [tex]\frac{(f(a + h) - f(a)) }{h}[/tex]:
Thus:
[tex]\frac{((3a + 3h + 6) - (3a + 6)) }{h}\\\\\frac{(3a + 3h + 6 - 3a - 6) }{h}\\\\[/tex]
[tex]\frac{(3a - 3a + 3h + 6 - 6) }{h}\\\\= \frac{3h }{h}\\\\\mathbf{= 3}[/tex]
Therefore, given the function, f(x) = 3x + 6, we can solve for f(a), f(a + h) and [tex]\frac{(f(a + h) - f(a)) }{h}[/tex] by substituting their values into f(x) = 3x + 6. We will have the following:
[tex]\mathbf{f(a) = 3a + 6}\\\\\mathbf{f(a + h) = 3a + 3h + 6}\\\\\mathbf{\frac{(f(a + h) - f(a)) }{h} = 6}[/tex]
Learn more here:
https://brainly.com/question/8161429