Differential Equation

1. The given equation is probably supposed to read
y'' - 2y' - 3y = 64x exp(-x)
First consider the homogeneous equation,
y'' - 2y' - 3y = 0
which has characteristic equation
r² - 2r - 3 = (r - 3) (r + 1) = 0
with roots r = 3 and r = -1. Then the characteristic solution is
[tex]y = C_1 e^{3x} + C_2 e^{-x}[/tex]
and we let y₁ = exp(3x) and y₂ = exp(-x), our fundamental solutions.
Now we use variation of parameters, which gives a particular solution of the form
[tex]y_p = u_1y_1 + u_2y_2[/tex]
where
[tex]\displaystyle u_1 = -\int \frac{64xe^{-x}y_2}{W(y_1,y_2)} \, dx[/tex]
[tex]\displaystyle u_2 = \int \frac{64xe^{-x}y_1}{W(y_1,y_2)} \, dx[/tex]
and W(y₁, y₂) is the Wronskian determinant of the two fundamental solutions. This is
[tex]W(y_1,y_2) = \begin{vmatrix}e^{3x} & e^{-x} \\ (e^{3x})' & (e^{-x})'\end{vmatrix} = \begin{vmatrix}e^{3x} & e^{-x} \\ 3e^{3x} & -e^{-x}\end{vmatrix} = -e^{2x} - 3e^{2x} = -4e^{2x}[/tex]
Then we find
[tex]\displaystyle u_1 = -\int \frac{64xe^{-x} \cdot e^{-x}}{-4e^{2x}} \, dx = 16 \int xe^{-4x} \, dx = -(4x + 1) e^{-4x}[/tex]
[tex]\displaystyle u_2 = \int \frac{64xe^{-x} \cdot e^{3x}}{-4e^{2x}} \, dx = -16 \int x \, dx = -8x^2[/tex]
so it follows that the particular solution is
[tex]y_p = -(4x+1)e^{-4x} \cdot e^{3x} - 8x^2\cdot e^{-x} = -(8x^2+4x+1)e^{-x}[/tex]
and so the general solution is
[tex]\boxed{y(x) = C_1 e^{3x} + C_2e^{-x} - (8x^2+4x+1) e^{-x}}[/tex]
2. I'll again assume there's typo in the equation, and that it should read
y''' - 6y'' + 11y' - 6y = 2x exp(-x)
Again, we consider the homogeneous equation,
y''' - 6y'' + 11y' - 6y = 0
and observe that the characteristic polynomial,
r³ - 6r² + 11r - 6
has coefficients that sum to 1 - 6 + 11 - 6 = 0, which immediately tells us that r = 1 is a root. Polynomial division and subsequent factoring yields
r³ - 6r² + 11r - 6 = (r - 1) (r² - 5r + 6) = (r - 1) (r - 2) (r - 3)
and from this we see the characteristic solution is
[tex]y_c = C_1 e^x + C_2 e^{2x} + C_3 e^{3x}[/tex]
For the particular solution, I'll use undetermined coefficients. We look for a solution of the form
[tex]y_p = (ax+b)e^{-x}[/tex]
whose first three derivatives are
[tex]{y_p}' = ae^{-x} - (ax+b)e^{-x} = (-ax+a-b)e^{-x}[/tex]
[tex]{y_p}'' = -ae^{-x} - (-ax+a-b)e^{-x} = (ax-2a+b)e^{-x}[/tex]
[tex]{y_p}''' = ae^{-x} - (ax-2a+b)e^{-x} = (-ax+3a-b)e^{-x}[/tex]
Substituting these into the equation gives
[tex](-ax+3a-b)e^{-x} - 6(ax-2a+b)e^{-x} + 11(-ax+a-b)e^{-x} - 6(ax+b)e^{-x} = 2xe^{-x}[/tex]
[tex](-ax+3a-b) - 6(ax-2a+b) + 11(-ax+a-b) - 6(ax+b) = 2x[/tex]
[tex]-24ax+26a-24b = 2x[/tex]
It follows that -24a = 2 and 26a - 24b = 0, so that a = -1/12 = -12/144 and b = -13/144, so the particular solution is
[tex]y_p = -\dfrac{12x+13}{144}e^{-x}[/tex]
and the general solution is
[tex]\boxed{y = C_1 e^x + C_2 e^{2x} + C_3 e^{3x} - \dfrac{12x+13}{144} e^{-x}}[/tex]