Respuesta :

Answer:

Step-by-step explanation:

As RS is a straight line sin ∠RUT = sin ∠SUT

line UT bisects ∠RTS

Let θ be ∠UTR and ∠UTS

Law of sines

Left side triangle

3x/sinθ = 40/sinRUT

sinRUT = 40sinθ / 3x

Right side triangle

(x + 2) / sinθ = 16 / sinSUT

(x + 2) / sinθ = 16 / (40sinθ / 3x)

(x + 2)(40sinθ / 3x)  = 16sinθ

(x + 2)(40sinθ)  = 48xsinθ

40xsinθ + 80sinθ = 48xsinθ

40x + 80 = 48x

80 = 8x

x = 10