So the corresponding answers to these questions are:
[tex]A) a= 7.33657 \\ b= 1.10757\\B)f(t)^{-1} = log (7.33657)+ t*log(1.10757)\\C)728.10886\\D) 2.86219[/tex]
For the letter a, it will be necessary to calculate the values of a and b, therefore:
[tex]f(t)=a*b^{t} \\f(7)=15 \\ a*b^{7}=15\\a=\frac{15}{b^{7}} \\f(12)=25\\a= \frac{25}{b^{12}}\\\frac{15}{b^{7}} =\frac{25}{b^{12}}=> b^{5}= 1.66667=> b= 1.10757\\a=\frac{15}{b^{7}}=> a=7.33657[/tex]
So for the letter B we will do the logarithm so we will have:
[tex]P=f(t)=ab^{t}=(7.33657)(1.10757)^{t} \\f(t)^{-1} = log (7.33657)+ t*log(1.10757)[/tex]
For the letter C we will use the formula given in the statement just substituting the value of t=45:
[tex]f(t)=ab^{t} \\f(45)=(7.33657)(1.10757)^{45} = 728.10886[/tex]
The formula calculated on the letter B will be useful for the letter D only having to substitute t=45, therefore:
[tex]f(45)^{-1} = log (7.33657)+ 45*log(1.10757)\\f(45)^{-1} = 2.86219[/tex]
Learn more: brainly.com/question/20838017