Respuesta :

Answer:

Equivalent Expression:  [tex]\displaytext\mathsf{\frac{a^7}{b^8}}[/tex]

Step-by-step explanation:

Given the exponential expression,  [tex]\displaystyle\mathsf{\frac{a^{12}\:b^{-3}}{a^{5}\:b^{5}}}[/tex]:

We could use the Quotient Rule of Exponents where it states that:

[tex]\displaystyle\mathsf{\frac{a^m}{a^n}\:=\:a^{(m\:-\:n)}}[/tex]

Since we have the variables, a and b as the base, we could simply apply the Quotient Rule and subtract their exponents.

[tex]\displaystyle\mathsf{\frac{a^{12}\:b^{-3}}{a^{5}\:b^{5}}\:=\:a^{(12\:-\:5)}\:b^{(-3\:-\:5)}}[/tex]

[tex]\displaytext\mathsf{=\:a^{7}\:b^{-8}}[/tex]

Next, we must transform the negative exponent of base, b, into positive by applying the Negative Exponent Rule, where it states that:

[tex]\large\text{$ a^{-n}\:=\:\frac{1}{a^{n}} $}[/tex]

Applying the Negative Exponent Rule will result in the following exponential expression:

[tex]\LARGE\text{$ a^{7}\:b^{-8}\:=\:[a^{7}\:\times\:\frac{1}{b^8}]\:=\:\frac{a^7}{b^8} $}[/tex]

Therefore, the equivalent expression is:  [tex]\LARGE\text{$ \frac{a^7}{b^8} $}[/tex].