to find the inverse of any expression, we start off by doing a quick variables switcheroo and then solve for "y", so let's do so
[tex]\stackrel{P(x)}{y}~~=~~3\sqrt[3]{x}-1\implies \stackrel{\textit{quick switcheroo}}{x~~ =~~3\sqrt[3]{y}-1}\implies x+1 = 3\sqrt[3]{y}\\\\\\\cfrac{x + 1}{3}=\sqrt[3]{y}\implies \left( \cfrac{x + 1}{3} \right)^3 =y\implies \cfrac{(x+1)^3}{3^3}=y\implies \cfrac{(x+1)^3}{27}=\stackrel{\stackrel{y}{\downarrow }}{P^{-1}(x)}[/tex]