Respuesta :

= W^3+(-5)
= W^3-5
= W^-2

Answer:

 [tex]\Large \text{$ \frac{1}{w^2} $}[/tex]

Step-by-step explanation:

Given the exponential expression, [tex]\displaytext\mathsf{w^3\:\times\:w^{-5}}[/tex], where it involves the multiplication of the same base, w, with varying powers.  

Using the Product Rule of Exponents, where it states that, [tex]\displaystyle\mathsf{a^{m}\:\times\:a^{n}\:=\:a^{(m\:+\:n)}}[/tex].

Hence, we simply need to add the exponents:  

[tex]\displaytext\mathsf{w^3\:\times\:w^{-5}\:=\:w\:^{[3\:+\:(-5)]}\:=\:w^{-2}}[/tex]

Next, apply the Negative Exponent Rule, where it states that: [tex]\displaystyle\mathsf{a^{-n}\:=\:\frac{1}{a^n}}[/tex].

Transforming the negative exponent of  [tex]\displaytext\mathsf{w^{-2}}[/tex]  becomes a positive exponent by using the Negative Exponent Rule.

  [tex]\displaytext\mathsf{w^{-2}\:=\:\frac{1}{w^2}}[/tex]