Respuesta :

Answer:

1/5525

Step-by-step explanation:

We now that a standard deck has 52 different cards. Also we know that a standard deck has four different suits, i.e., Spades, Hearts, Diamonds and Clubs.  We can find the following cards for each suit: Ace, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen and King.

Now, the probability of getting any of these cards off the top of a standard deck of well-shuffled cards is 1/52. As we have 4 different sixes, we have that the probability of getting a six is 4/52. When we get a six, in the deck only remains 3 sixes and 51 cards, so, the probability of getting another six later is 3/51. When we get the second six, in the deck only remains 2 sixes and 50 cards, so, the probability of getting the third six is 2/50. As we have independet events, we should have that the probability of getting 3 sixes off the top of a standard deck of well-shuffled cards is

(4/52)(3/51)(2/50)=

24/132600=

12/66300=

6/33150=

3/16575=

1/5525