Evaluate the line integral, where C is the given space curve.


int C ye^z dz + x ln(x) dy − y dx, C: x = e^t, y = 4t, z = ln(t), 1 ≤ t ≤ 2

Respuesta :

Compute the differentials:

x = exp(t)   ⇒   dx = exp(t) dt

y = 4t   ⇒   dy = 4 dt

z = ln(t)   ⇒   dz = 1/t dt

Then in the integral, we have

[tex]\displaystyle \int_C ye^z \, dz + x\ln(x) \, dy - y \, dx[/tex]

[tex]\displaystyle = \int_1^2 4te^{\ln(t)} \cdot \frac{dt}t + e^t \ln\left(e^t\right) \cdot 4 \, dt - 4t \cdot e^t \, dt[/tex]

[tex]\displaystyle = \int_1^2 4t \, dt + 4te^t \, dt - 4te^t \, dt[/tex]

[tex]\displaystyle = \int_1^2 4t \, dt = 2(2^2 - 1^2) = \boxed{6}[/tex]