Respuesta :
[tex]~~~~~~ \stackrel{\textit{for the first 2 years}}{\textit{Continuously Compounding Interest Earned Amount}} \\\\ A=Pe^{rt}\qquad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill & \$18400\\ r=rate\to 2.991\%\to \frac{2.991}{100}\dotfill &0.02991\\ t=years\dotfill &2 \end{cases} \\\\\\ A = 18400e^{0.02991\cdot 2}\implies A = 18400e^{0.05982}\implies A\approx 19534.276[/tex]
now let's grab that amount and invest it for the remaining 7 years at 4.192% compounded.
[tex]~~~~~~ \stackrel{\textit{for the last 7 years}}{\textit{Compound Interest Earned Amount}}\\\\A=P\left(1+\frac{r}{n}\right)^{nt}\quad\begin{cases}A=\textit{accumulated amount}\\P=\textit{original amount deposited}\dotfill &\$19534.276\\r=rate\to 4.192\%\to \frac{4.192}{100}\dotfill &0.04192\\n=\begin{array}{llll}\textit{times it compounds per year}\\\textit{yearly meaning once}\end{array}\dotfill &\\t=years\dotfill &7\end{cases}[/tex]
[tex]A=19534.276\left(1+\frac{0.04192}{1} \right)^{1\cdot 7}\implies \boxed{A\approx 26039.82}[/tex]