Respuesta :

The graph shown represents an absolute function.

The equation of the graph is [tex]\mathbf{y = -\frac 12|x|}[/tex]

Considering the straight on the right, we have the following points

[tex]\mathbf{(x,y) = (0,0) (4,-2)}[/tex]

Start by calculating the slope (m)

[tex]\mathbf{m = \frac{y_2 - y_1}{x_2 -x_1}}[/tex]

So, we have:

[tex]\mathbf{m = \frac{-2 - 0}{4-0}}[/tex]

[tex]\mathbf{m = \frac{-2 }{4}}[/tex]

Simplify

[tex]\mathbf{m = -\frac{1}{2}}[/tex]

So, the slope of the line is -1/2

The equation is then calculated as:

[tex]\mathbf{y = m(x - x_1) + y_1}[/tex]

This gives

[tex]\mathbf{y = -\frac 12(x -0) + 0}[/tex]

[tex]\mathbf{y = -\frac 12(x)}[/tex]

Represent x as an absolute value

[tex]\mathbf{y = -\frac 12|x|}[/tex]

Hence, the equation of the graph is [tex]\mathbf{y = -\frac 12|x|}[/tex]

Read more about absolute graphs at:

https://brainly.com/question/1389494