Respuesta :

let's change the decials first off to fractions and get the slope and line

[tex]2.\underline{5}\implies \cfrac{25}{1\underline{0}}\implies \cfrac{5}{2}~\hfill 6.\underline{5}\implies \cfrac{65}{1\underline{0}}\implies \cfrac{13}{2} \\\\[-0.35em] ~\dotfill\\\\ (\stackrel{x_1}{1}~,~\stackrel{y_1}{\frac{5}{2}})\qquad (\stackrel{x_2}{0}~,~\stackrel{y_2}{\frac{13}{2}})[/tex]

[tex]\stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{\frac{13}{2}}-\stackrel{y1}{\frac{5}{2}}}}{\underset{run} {\underset{x_2}{0}-\underset{x_1}{1}}}\implies \cfrac{~~ \frac{8}{2}~~}{-1}\implies \cfrac{4}{-1}\implies -4 \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{\cfrac{5}{2}}=\stackrel{m}{-4}(x-\stackrel{x_1}{1})[/tex]

[tex]y-\cfrac{5}{2}=-4x+4\implies y=-4x+4+\cfrac{5}{2}\implies y = -4x+\cfrac{13}{2}[/tex]