A vector makes an angle, θ, with the horizontal. The horizontal and vertical components of the vector will be equal in magnitude if θ is.

Respuesta :

A vector has horizontal and vertical components.

The value of [tex]\mathbf{\theta }[/tex] is 45 degrees, when the horizontal and vertical components are equal

Let the magnitude of the vector be H.

So, the horizontal (h) and the vertical components (v) of the vector would be:

[tex]\mathbf{v = Hcos(\theta)}[/tex] --- vertical

[tex]\mathbf{h = Hsin(\theta)}[/tex]

Equate both expressions

[tex]\mathbf{h = v}[/tex]

Substitute values for h and v

[tex]\mathbf{Hcos(\theta) = Hsin(\theta)}[/tex]

Divide both sides by H

[tex]\mathbf{cos(\theta) = sin(\theta)}[/tex]

When [tex]\mathbf{cos(\theta) = sin(\alpha)}[/tex], then

[tex]\mathbf{\theta + \alpha = 90^o}[/tex]

So, we have:

[tex]\mathbf{\theta + \theta = 90^o}[/tex]

[tex]\mathbf{2\theta = 90^o}[/tex]

Divide both sides by 2

[tex]\mathbf{\theta = 45^o}[/tex]

Hence, the value of [tex]\mathbf{\theta }[/tex] is 45 degrees

Read more about vectors at:

https://brainly.com/question/18660017