4003708
contestada

if r and s represent the solutions of the equation below and r>s, what is the value of the difference r-s?

(3x+14)x=5

Respuesta :

Answer:

16/3

Step-by-step explanation:

(3x + 14)x = 5

3x² + 14x = 5

3x² + 14x - 5 = 0

3x² + 15x - x - 5 = 0

3x(x + 5) - 1(x + 5) = 0

(3x - 1)(x + 5) = 0

x = 1/3 & -5

Here,

r = 1/3

s = -5

r - s

1/3 - (-5)

1/3 + 5

1 + 15/3

16/3

msm555

the value of the difference r-s is [tex]\bold{\frac{16}{3}}[/tex]

Answer:

Solution given:

(3x+14)x=5

opening bracket

3x²+14x=5

3x²+14x-5=0

Doing middle term factorisation

3x²+(15-1)x-5=0

3x²+15x-x-5=0

3x(x+5)-1(x+5)=0

(3x-1)(x+5)=0

either

x=-5

or

3x-1=0

3x=1

x=⅓

According to question value of x is r>s

so

⅓>-5

so

r=⅓

and

s=-5

Now

r-s=-(-5)=[tex]\frac{1+5*3}{3}=\frac{16}{3}[/tex]